The Distribution of the Eigenvalues of Hecke Operators

نویسندگان

  • J. B. Conrey
  • W. Duke
  • D. W. Farmer
چکیده

τ(n)e(nz). The two equations were proven for τ(n) by Mordell, using what are now known as the Hecke operators. The inequality was proven by Deligne as a consequence of his proof of the Weil conjectures. Those results determine everything about af (n) except for the distribution of the af (p) ∈ [−2, 2]. Define θf (p) ∈ [0, π] by af (p) = 2 cos θf (p). It is conjectured that for each f the θf (p) are uniformly distributed with respect to the Sato–Tate measure

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic distribution of eigenvalues of the elliptic operator system

Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.

متن کامل

The Selberg Trace Formula for Hecke Operators on Cocompact Kleinian Groups

We compute the Selberg trace formula for Hecke operators (also called the trace formula for modular correspondences) in the context of cocompact Kleinian groups with finite-dimentional unitary representations. We give some applications to the distribution of Hecke eigenvalues, and give an analogue of Huber’s theorem.

متن کامل

On Bounding Hecke-siegel Eigenvalues

We use the action of the Hecke operators T̃j(p 2) (1 ≤ j ≤ n) on the Fourier coefficients of Siegel modular forms to bound the eigenvalues of these Hecke operators. This extends work of Duke-Howe-Li and of Kohnen, who provided bounds on the eigenvalues of the operator T (p).

متن کامل

Hecke Operators for Weakly Holomorphic Modular Forms and Supersingular Congruences

We consider the action of Hecke operators on weakly holomorphic modular forms and a Hecke-equivariant duality between the spaces of holomorphic and weakly holomorphic cusp forms. As an application, we obtain congruences modulo supersingular primes, which connect Hecke eigenvalues and certain singular moduli.

متن کامل

Effective equidistribution of eigenvalues of Hecke operators

Article history: Received 13 October 2007 Revised 9 May 2008 Available online 17 December 2008 Communicated by David Goss In 1997, Serre proved an equidistribution theorem for eigenvalues of Hecke operators on the space S(N,k) of cusp forms of weight k and level N . In this paper, we derive an effective version of Serre’s theorem. As a consequence, we estimate, for a given d and prime p coprime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996